164,087 research outputs found

    Observation of Phase Defects in Quasi-2D Bose-Einstein Condensates

    Full text link
    We have observed phase defects in quasi-2D Bose-Einstein condensates close to the condensation temperature. Either a single or several equally spaced condensates are produced by selectively evaporating the sites of a 1D optical lattice. When several clouds are released from the lattice and allowed to overlap, dislocation lines in the interference patterns reveal nontrivial phase defects

    Lower-dimension vacuum defects in lattice Yang-Mills theory

    Full text link
    We overview lattice data on d=1,2,3 vacuum defects in four-dimensional gluodynamics. In all the cases defects have total volume which scales in physical units (with zero fractal dimension). In case of d=1,2 the defects are distinguished by ultraviolet divergent non-Abelian action as well. This sensitivity to the ultraviolet scale allows to derive from the continuum theory strong constraints on the properties of the defects. The constraints turn to be satisfied by the lattice data. In the SU(2) case we introduce a classification scheme of the defects which allows to (at least) visualize the defect properties in a simple and unified way. Not-yet-checked relation of the defects to the spontaneous chiral symmetry breaking is suggested by the scheme.Comment: 19 pages Dedicated to Yuri A. Simonov on his 70th birthda

    Energetics of intrinsic point defects in ZrSiO4_4

    Full text link
    Using first principles calculations we have studied the formation energies, electron and hole affinities, and electronic levels of intrinsic point defects in zircon. The atomic structures of charged interstitials, vacancies, Frenkel pairs and anti-site defects are obtained. The limit of high concentration of point defects, relevant for the use of this material in nuclear waste immobilization, was studied with a variable lattice relaxation that can simulate the swelling induced by radiation damage. The limit of low concentration of defects is simulated with larger cells and fixed lattice parameters. Using known band offset values at the interface of zircon with silicon, we analyze the foreseeable effect of the defects on the electronic properties of zircon used as gate in metal-oxide-semiconductor devices.Comment: preprint 16 pages, 4 figures, and 5 table

    Anomalous far infrared monochromatic transmission through a film of type-II superconductor in magnetic field

    Full text link
    Anomalous far infrared monochromatic transmission through a lattice of Abrikosov vortices in a type-II superconducting film is found and reported. The transmitted frequency corresponds to the photonic mode localized by the defects of the Abrokosov lattice. These defects are formed by extra vortices placed out of the nodes of the ideal Abrokosov lattice. The extra vortices can be pinned by crystal lattice defects of a superconductor. The corresponding frequency is studied as a function of magnetic field and temperature in the framework of the Dirac-type two-band model. While our approach is valid for all type-II superconductors, the specific calculations have been performed for the YBa2_{2}Cu3_{3}O7−δ_{7-\delta} (YBCO). The control of the transmitted frequency by varying magnetic field and/or temperature is analyzed. It is suggested that found anomalously transmitted localized mode can be utilized in the far infrared monochromatic filters.Comment: 9 pages, 2 figure

    Nematic cells with defect-patterned alignment layers

    Full text link
    Using Monte Carlo simulations of the Lebwohl--Lasher model we study the director ordering in a nematic cell where the top and bottom surfaces are patterned with a lattice of ±1\pm 1 point topological defects of lattice spacing aa. We find that the nematic order depends crucially on the ratio of the height of the cell HH to aa. When H/a≳0.9H/a \gtrsim 0.9 the system is very well--ordered and the frustration induced by the lattice of defects is relieved by a network of half--integer defect lines which emerge from the point defects and hug the top and bottom surfaces of the cell. When H/a≲0.9H/a \lesssim 0.9 the system is disordered and the half--integer defect lines thread through the cell joining point defects on the top and bottom surfaces. We present a simple physical argument in terms of the length of the defect lines to explain these results. To facilitate eventual comparison with experimental systems we also simulate optical textures and study the switching behavior in the presence of an electric field

    Radial solitons in armchair carbon nanotubes

    Full text link
    Radial solitons are investigated in armchair carbon nanotubes using a generalized Lennard-Jones potential. The radial solitons are found in terms of moving kink defects whose velocity obeys a dispersion relation. Effects of lattice discreteness on the shape of kink defects are examined by estimating the Peierls stress. Results suggest that the typical size for an unpinned kink phase is of the order of a lattice spacing.Comment: 11 pages, 3(eps) figure
    • …
    corecore